D'où vient l'énergie du Soleil?

1) Réactions nucléaires

Comme on l'a vu dans le chapitre 1.1, au cœur du soleil il se produit des **réactions de fusion nucléaires** qui transforment l'Hydrogène en Hélium.

[Remarque : le Soleil ne « brule » pas ! Ce n'est pas une réaction chimique de combustion]

Ces réactions créent de nouveaux éléments (chap 1.1) mais surtout elles produisent **une énorme quantité d'énergie** qui va stabiliser notre étoile en compensant les forces de gravitation internes.

Cette énergie est transformée en **rayonnement électromagnétique** (Ondes radios, IR, lumière, UV, RX, Rγ) et c'est ce rayonnement que nous recevons sur Terre qui nous apporte de l'énergie.

2) Energie des réactions nucléaires

Lors d'une réaction nucléaire, la masse des produits obtenus est inférieure à la masse des réactifs (contrairement à une réaction chimique).

- La masse manquante est appelée : perte de masse : on la note $|\Delta m|$
- Elle a pour expression : $|\Delta m| = |m \text{ (produits)} m \text{ (réactifs)}|$

Dans la théorie de la relativité restreinte, en 1905, EINSTEIN a montré que la masse est une forme d'énergie et il a donné la relation entre eux :

 ${f c}$ est une constante universelle, c'est la vitesse de la lumière dans le vide : ${f c}=299792458$ m / s. Pour les calculs, on peut prendre la valeur approchée : ${f c}=3,00\times 10^8$ m / s.

Le Soleil tire donc son énergie de la transformation de la masse en énergie lors des réactions nucléaire suivant la relation : $\mathbf{E}_{\text{libérée}} = |\Delta \mathbf{m}|$. \mathbf{c}^2

Chaque seconde le Soleil transforme 4 millions de tonnes de matière en énergie.

3) Rappels relation puissance – énergie

On définit la puissance P par la relation :
$$P = \frac{E}{\Delta t}$$
 en Watts ; la durée Δt en secondes (s) ; l'énérgie E en Joules (J) [autre système d'unités : P en W, Δt en h ; E en Wh]

Ordre de grandeur d'énergies libérées.

Type de réaction	Fusion	Combustion du pétrole
Matière	1,0 g d'hydrogène fusionné	1,0 g de pétrole brûlé
Énergie libérée	3,6 x 10 ¹¹ J	$4.0 \times 10^4 \text{ J}$